Vivimos en el planeta Tierra, planeta del Sistema Solar que ocupa la tercera órbita alrededor del sol. La Tierra que conocemos hoy en día así como la vida que alberga es fruto de una larga historia, una historia que se remonta a hace aproximadamente 4.550 millones de años. Esta edad la conocemos gracias a la actividad de algunos elementos químicos radiactivos que encontramos en las rocas. Estos elementos se desintegran a lo largo del tiempo dando lugar a otros elementos químicos estables a una tasa de cambio aproximadamente constante. Este proceso puede ocurrir en tan sólo unas decenas de miles de años, como la desintegración del carbono 14 (14C), o a lo largo de miles de millones de años, como algunos isótopos radiactivos del uranio. A lo largo de todo este tiempo, la Tierra ha ido cambiando continuamente, sin tregua alguna, de forma que la configuración de continentes que conocemos actualmente no ha permanecido inmutable en el tiempo. De igual forma, los organismos que habitamos el Planeta Azul, no estamos aquí desde el principio de los tiempos. Durante la larga historia de existencia del planeta han ido cambiando las distintas formas de vida que lo han ocupado gracias a la evolución. Así mismo, los diferentes grupos de organismos actuales o que han pasado a formar parte del registro fósil, han ido apareciendo con un orden debido a que las condiciones globales del planeta han cambiado con el tiempo.
Organiza: DPTO. ESTRATIGRAFÍA Y PALEONTOLOGÍA. Julio Aguirre Rodríguez
ADAPTACIONES MORFOLÓGICAS EN AVES
En nuestro planeta existe una gran variedad de formas animales. Esta variedad no es fruto de la casualidad ni del capricho divino, sino que responde a la evolución que durante millones de años ha permitido a los animales alimentarse de un recurso, escapar de un depredador, superar a un competidor, vivir en determinado ambiente… Una de las expresiones de la evolución son las adaptaciones morfológicas, por ejemplo, la gran variedad de tamaños y formas en los picos de las aves. El objetivo de este taller es que los escolares experimenten en primera persona el porqué de las distintas formas que aparecen en la naturaleza poniendo las aves como ejemplo. Se enfrentarán al reto de capturar distintos alimentos con ayuda de un pico concreto, y también comprobarán como la forma de las patas también es importante según el medio en el que se viva.
Organiza: Departamento de Zoología, Laura Pérez Zarcos, Francisco Sánchez Piñero, Manolo Martín Fernández
La vida en nuestro Planeta depende de unos seres invisibles, los microorganismos, que constituyen la base de muchos ecosistemas y son, además, el cemento que cohesiona las redes alimentarias. De ellos depende el reciclado de los elementos en todos los ambientes, tierra, agua y aire. Aún más, en los ambientes acuáticos, fundamentales para la vida en la Tierra, los microbios son los principales captadores de la energía solar. Los microbios nos rodean y condicionan nuestra vida. Son compañeros próximos que nos habitan por dentro y por fuera. ¡Y todo ello sin que seamos conscientes de su presencia e importancia!. Por ello los podemos considerar extraños íntimos.
En muchos casos, las relaciones íntimas (sim-biosis) de microbios con plantas y animales proporcionan beneficio mutuo a los socios. Su estrecho contacto durante decenas y, a veces, cientos de millones de años ha condicionado intensamente su evolución dando lugar a nuevas propiedades biológicas que les permitan adaptarse y complementarse los unos a los otros. Las simbiosis mutualistas entre animales y microbios son innumerables. Algunas tienen enorme importancia para la alimentación humana, como es el caso de los rumiantes, que pueden digerir su comida sólo gracias a los microbios de su estómago. Otras son fundamentales para los ecosistemas o la supervivencia de las especies.
Los microbios también ayudan a los humanos a conservar y producir alimentos. El queso es el alimento fermentado más antiguo que se conoce. Las bacterias lácticas coagulan la leche y producen antimicrobianos que impiden el desarrollo de microbios que puedan alterarla o intoxicarnos. Además, dan buen sabor y olor al alimento. Ellas permanecen vivas en el queso y, aunque invisibles, podemos cultivarlas o poner de manifiesto su huella genética.
Organiza: DEPARTAMENTO MICROBIOLOGÍA. Samir Ananou Jaled, Manuel Martín Bueno, Antonio Martín Platero, Eva Valdivia Martínez, Concepción Millán García
Esta actividad se ha diseñado para que los alumnos entiendan algunos aspectos básicos de la Hidrogeología y del Ciclo Hidrológico en su parte menos visible: las aguas subterráneas.
¿Qué es un acuífero?, ¿por qué los suelos y las rocas pueden contener y transmitir el agua?, ¿qué efectos tiene la extracción de las aguas subterráneas?, ¿cómo se contaminan las aguas subterráneas?, ¿qué es un pozo artesiano?, son preguntas a las que se dará respuesta en esta actividad.
En la misma se utiliza un modelo analógico (WARDS Natural Science) que básicamente consiste en una caja de metacrilato, rellena con capas de arena de distinto color y tamaño de grano, a través de la cual se hace circular el agua.
El diseño utilizado simula dos acuíferos diferentes, uno libre y otro confinado, y puede ayudarnos a entender algunos principios básicos del funcionamiento hidrodinámico de los acuíferos y de la contaminación de las aguas subterráneas.
Se utilizan varios tubos verticales a modo de pozos y perforaciones de observación de las aguas subterráneas, así como tanques enterrados que sufren pérdidas (como el de una gasolinera) y un río o un lago que atraviesa parte de la sucesión litológica.
Cuestionario de la Actividad (pdf)
Organiza: DPTO. GEODINÁMICA. Manuel López Chicano. Carlos Duque Calvache. Francisco José Crespo Jiménez
Hoy en día, una gran parte de la investigación se desarrolla en grupos multidisciplinares, que se complementan entre sí. Esta actividad refleja esta forma de actuar. Con el hilo argumental de los fenómenos de fluorescencia y fosforescencia como parte de la luminiscencia, los alumnos descubrirán no sólo qué son estos fenómenos, en qué se diferencian y lo próximos que están en nuestra vida cotidiana y en la naturaleza, sino que, dependiendo de los requerimientos de la Óptica, u otras ciencias, se desarrollan investigaciones en Química para obtener compuestos con las propiedades deseadas. Los visitantes podrán ver distintos materiales cotidianos en los que, por una razón u otra, se incluyen productos fluor o fosforescentes: billetes, tarjetas identificativas, detergentes, lámparas, etc.
Organiza: DPTO. QUÍMICA INORGÁNICA. Elisa Barea Martínez, Fátima Linares Ordóñez, Laura Méndez Liñán, José María Moreno Sánchez, Antonio José Mota Ávila, Purificación Sánchez Sánchez, Silvia Titos Padilla.
GRUPO PARA LA DIVULGACIÓN Y DIFUSIÓN DE LA ÓPTICA(GddO) DEPARTAMENTO DE ÓPTICA. José Antonio García García, Ana Carrasco Sanz, Luís Gómez Robledo, Juan Luís Nieves Gómez.
Con esta actividad pretendemos que los alumnos conozcan un laboratorio de Microbiología y cómo se trabaja con organismos tan pequeños que son invisibles al ojo humano. En primer lugar se les dará una pequeña charla en la que se les recordará qué tipo de seres vivos son objeto de estudio de la Microbiología. Se les explicarán las repercusiones de estos microorganismos como agentes patógenos que producen enfermedades infecciosas, pero también se les enumerarán sus efectos beneficiosos medioambientales, industriales y biotecnológicos. Se les mostrarán ejemplos concretos para que sepan apreciar el papel tan importante que estos seres vivos ejercen en nuestro planeta. Debido a sus características tan especiales, es necesario utilizar una serie de técnicas específicas de la Microbiología. Tras comentar las normas básicas y las precauciones a tomar para trabajar con estos microorganismos, se les mostrará diferentes técnicas utilizadas para la esterilización de los distintos tipos de materiales. Varios profesores les haremos una pequeña demostración de cómo se cultivan y aíslan los microorganismos. Se les enseñarán placas Petri con crecimiento de distintos microorganismos y observarán los diferentes tipos de colonias a la lupa. Se les enseñará cómo se preparan tinciones de hongos filamentosos, levaduras y bacterias. Estas preparaciones las observarán posteriormente al microscopio y podrán diferenciar las diferentes morfologías bacterianas. Aprenderán también a diferenciar en el microscopio hongos y levaduras. Por último, y para demostrarles que convivimos con una gran cantidad y variedad de estos pequeños seres, se harán cultivos de diferentes superficies del laboratorio y de la piel de algunos de los asistentes. Las fotos con los resultados se enviarán por correo electrónico al profesor encargado para que las muestre a sus alumnos.
Cuestinario de la Actividad (Pdf)
Organiza: DEPARTAMENTO DE MICROBIOLOGÍA. Juana Pérez Torres, Aurelio Moraleda Muñoz, Nuria Gómez Santos, Elena García Bravo
Una de las estrategias generalizadas de los animales para hacer frente a las condiciones ambientales desfavorables consiste en huir de las mismas, en lo que se conoce como respuestas de evitación. A veces estas estrategias se vuelven realmente complejas y la solución adaptativa consiste en la aparición de fases resistentes que implican profundos cambios y, generalmente, el animal entra en un estado de latencia, con escasos o nulos signos de actividad vital, que se conoce como criptobiosis.
Se trata de que los alumnos entren en contacto con animales que presentan estos mecanismos especiales, en cuanto a su capacidad para detener las funciones vitales y adoptar formas de resistencia que les permiten afrontar la desecación total de su hábitat, lo que es una forma de evitación en el tiempo.
La especie elegida es Artemia salina un pequeño crustáceo, que los alumnos podrán observar en las distintas fases de su ciclo biológico. Así mismo, podrán experimentar con los quistes (formas resistentes) y comprobar su capacidad de eclosionar cuando las condiciones ambientales lo permiten.
Cuestinario de la Actividad (Pdf)
Organiza: DPTO. BIOLOGÍA ANIMAL. Gabriel Cardenete, Hernández, Manuel García Gallego, Mª Carmen Hidalgo Jiménez, Félix Hidalgo Puertas, Eugenio Martín Cuenca, Amalia E. Morales Hernández y Laura García Rejón.
¿Por qué se producen los terremotos tectónicos? Las fallas son fracturas del terreno en las que dos bloques se mueven entre si. El movimiento en las fallas se produce por el desplazamiento de las placas tectónicas y por ello los terremotos se concentran en sus bordes. Sin embargo sólo las fallas que tienen un elevado rozamiento producen terremotos. Cuanto mayor sea la superficie de la falla y el desplazamiento, mayor es la magnitud del movimiento. Se puede realizar un pequeño experimento que ilustra el movimiento continuo de las fallas que tienen bajo rozamiento y no producen terremotos y compararlo con el movimiento discontinuo con saltos bruscos que simularía los terremotos en fallas con elevado rozamiento. Para ello se compara el desplazamiento de un bloque de material sobre una superficie lisa con talco y sobre una superficie rugosa con papel de lija. Si colocamos un recipiente con líquidos de distintos colores sobre el bloque que se desplaza simulará el efecto de los tsunamis.
El material necesario sería:
- Construcción sobre una tabla del modelo que se adjunta.
- Se expondría un espejo de falla natural en el que se observan las estrías.
- Además una animación en ordenador donde se muestra el efecto de las fallas y las consecuencias de terremotos y tsunamis.
Organiza: DPTO. GEODINÁMICA. Francisco José Martínez Moreno (Dpto. de Geodinámica), Ana Ruiz Constán (Instituto Geológico y Minero de España), Antonio Pedrera Parias (Instituto Geológico y Minero de España)
Algunos fenómenos astronómicos determinan aspectos tan cotidianos de nuestra vida como los movimientos aparentes del Sol y la Luna en el cielo o nuestra forma de medir el tiempo (los días, estaciones, años), que por monótonos y por nuestro estilo de vida, pasan muchas veces inadvertidos. Por otro lado, la contaminación lumínica nos priva en muchas ciudades de la contemplación del cielo estrellado.
Con este taller pretendemos que los alumnos de ESO y bachillerato puedan observar, tomar medidas y analizar los movimientos aparentes de nuestros astros más cercanos, en concreto del planeta Venus.
Analizaremos el movimiento aparente de Venus en el cielo; veremos que el planeta presenta fases (similares a las de la Luna) y que el tamaño aparente del planeta cambia según su posición relativa con respecto a la Tierra. Se pretende que establezcan una conexión clara entre la trayectoria del planeta en el cielo y el movimiento real del sistema Venus-Tierra-Sol en el Sistema Solar.
El taller se realizará en el aula de informática de la Facultad de Ciencias, haciendo uso del planetario virtual Stellarium (www.stellarium.org). Los alumnos dispondrán de unos guiones que podrán seguir para realizar las observaciones, medidas y cálculos pertinentes, siempre guiados y supervisados por miembros del grupo de Astrofísica Galáctica.
Cuestinario de la Actividad (Pdf)
Organiza: Dpto. de Física Teórica y del Cosmos. Grupo de Astrofísica Galáctica. Eduardo Battaner López, Estrella Florido Navío, Ana Guijarro Román, Israel Rodríguez Hermelo, Jorge Jiménez Vicente, Ute Lisenfeld, Isabel Pérez Martín, Simon Verley, Almudena Zurita Muñoz
En esta actividad visitaremos los Laboratorios de Física Cuántica y de Física Atómica y Nuclear. En el primero de ellos observaremos algunas de las evidencias que sorprendieron a los físicos en los inicios del siglo XX y que motivaron a una revolución en nuestra concepción del mundo físico: los fenómenos cuánticos tales como el efecto fotoeléctrico, que mostró cómo la luz estaba compuesta de “cuantos” de energía que se comportaban como corpúsculos o la difracción de electrones, que mostraba la naturaleza ondulatoria de los mismos. En el segundo observaremos los espectros de átomos y núcleos, emisión de radiación con energías discretas que muestran la estructura cuántica de estos sistemas. También veremos el funcionamiento de los detectores de radiación, concretamente el contador Geiger-Müller y la radiactividad de algunas muestras de baja actividad.
Cuestinario de la Actividad (Pdf)
Organiza: DEPARTAMENTO DE FÍSICA ATÓMICA, MOLECULAR Y NUCLEAR. J. Ignacio Porras Sánchez, Elvira Romera Gutiérrez, Carmen García Recio, Antonio M. Lallena Rojo, Marta Anguiano Millán, Daniel Rodríguez Rubiales