Fecha: 06/11/2020 al 11/12/2020.
Modalidad de celebración: Plataforma MoodleCloud.
Duración: 15 horas presenciales y/o síncronas online más 60 horas no presenciales online asíncronas y de trabajo autónomo del alumno. Horas totales 75. 

Dirección: Pedro González Rodelas (Prof. de la Univ. Granada).
Coordinación: Fco. Miguel García Olmedo (Prof. de la Univ. Granada).

Introducción:
No cabe la menor duda de que hoy en día la mecanización de tareas repetitivas y tediosas, así como el tratamiento y procesamiento intensivo de datos es uno de los hitos fundamentales de la sociedad de la información y de la era del Big Data.

Por otra parte, la continua evolución del mercado y la rápida convergencia entre la información y el conocimiento hace que tanto las empresas como los organismos de investigación busquen nuevos mecanismos tecnológicos para generar un valor diferencial de desarrollo, fomentando el uso de nuevas tecnologías de la información para mejorar la eficiencia operativa de la investigación, calidad de productos y/o servicios personalizados que transformen el comportamiento de los usuarios, generando a su vez nuevos modelos de negocio.

Curso Online - Python avanzado para Tratamiento de Datos e Inteligencia Artificial (II ed.)

Nosotros, los profesores participantes en esta iniciativa, tenemos una experiencia de más de 20 años usando lenguajes de programación y software de todo tipo, tanto libre como de tipo propietario; y podemos afirmar que cada uno de ellos posee sus ventajas e inconvenientes, pudiéndose adaptar mejor uno u otro a distintas tareas concretas.

No obstante, dentro del software libre, uno de los lenguajes que está teniendo de manera continuada una subida espectacular en cuanto a popularidad a nivel mundial, a la vez que ha tenido una mejora sustancial, con la inclusión y actualización de potentes y versátiles nuevos módulos de cálculo simbólico (SymPy), numérico (NumPy, Scipy), gráfico (Matplotlib, Seaborn, Bokeh), de tratamiento y ciencia de datos (Pandas, Openpyxl), Machine & Deep Learning (TensorFlow, PyTorch, scikit-learn, Pybrain, PyML), e Inteligencia Artificial en general (AIMA, pyDatalog, SimpleAI, EasyAI, etc.) ha sido sin duda Python; y de ahí su vertiginosa evolución y expansión a nivel mundial, no sólo en el ámbito académico, sino también en el científico e industrial. De hecho, basta con echar un vistazo a las numerosas propuestas, tanto de comunidades de desarrolladores, como de empresas privadas, surgidas a raíz de la versión de base inicial de Python, como por ejemplo IPython (interface interactivo de fácil uso, que gracias a Jupyter Notebook permite una versión HTML similar a los notebooks de Mathematica o Mapple) o Spyder (entorno integrado para cálculo científico parecido al de Matlab u Octave).

Por otro lado existen versiones completas de desarrollo, integrando Python como soporte de cálculo, pero con editores avanzados de texto para la programación y la depuración de código, ventanas de gráficos y datos, etc. La mayoría de estas plataformas integradas están disponibles para los distintos sistemas operativos Linux, MacOS X y Windows. Entre ellas cabría destacar Enthought Python Distribution (EPD), PyCharm y Anaconda CE (de Continuum Analytics).

Aparte de todo esto, se dispone ya de una gran cantidad de ejemplos, así como material de apoyo: manuales, libros, blogs y páginas web desarrollados por numerosos científicos y profesores de todo el mundo, siendo tan ingente dicho material que a veces resulta complicado realizar una selección del mismo para poder empezar.

Y de ahí surge esta iniciativa de formación para todo el que estuviera interesado en aprender a usar estas potentes herramientas para su uso personal a nivel de investigación y desarrollo.

El curso servirá pues para hacer más fácil y llevadera tanto la inmersión inicial en la Ciencia de Datos y la Inteligencia Artificial en general, como para el uso avanzado de muchos de los entresijos y detalles más técnicos de este potente y completo lenguaje de programación cuando se aplica para la mecanización de tareas informáticas rutinarias, como la generación automática de informes, gestión de ficheros y equipos, webscraping, etc. Así pues estará orientado tanto a los estudiantes de carreras científico-técnicas y de ingeniería que quieran aprender estas técnicas, como para los doctorandos e investigadores, a los que pueda resultar útil en su investigación.

No obstante, en esta situación totalmente excepcional provocada por la actual pandemia de la COVID-19, que amenaza con la posibilidad de nuevos rebrotes a nivel general, y especialmente en el ambiente universitario, hemos optado por reconfigurar esta nueva edición del curso de manera que se pueda seguir y cursar de manera totalmente online, reduciendo al mínimo las horas síncronas, o posiblemente presenciales, a una mera orientación previa de cada sesión o alguna que otra tutoría grupal, que se podría realizar presencialmente sólo en caso de que fuese solicitada por un grupo suficientemente numeroso de alumnos y las condiciones sanitarias del momento y la disponibilidad del aula apropiada en un centro de la UGR lo permita.

Más información e inscripciones

Escribir un comentario


La programación y mantenimiento de las páginas web albergadas en este sitio se han realizado con Software Libre por Ruvic. Soluciones Informáticas

Logo de Ruvic. Soluciones informáticas

The programming and maintenance of web pages hosted on this site were made with Free Software by Ruvic. Soluciones Informáticas

Logo de Ruvic. Soluciones informáticas