

Propuesta TFG. Curso 2025/2026

GRADO: Grado en Física

CÓDIGO DEL TFG: 267-297-2025/2026

1. DATOS BÁSICOS DEL TFG:

Título: La dimensionalidad en sistemas complejos: percolación triádica

Descripción general (resumen y metodología):

Las interacciones triádicas son interacciones de orden superior en las que un nodo afecta a la interacción entre otro par de nodos. Estas interacciones se dan, por ejemplo, cuando las células gliales en el cerebro modulan la señal sináptica entre pares neuronales, o cuando una o más especies afectan la interacción entre otras dos especies.

Para estudiar cómo las interacciones triádicas afectan a la conectividad de una red, recientemente se ha propuesto el modelo de percolación triádica [1], que define cómo los enlaces de la red se activan y desactivan debido al efecto de la regulación triádica. La percolación triádica transforma la estructura de una red en un proceso dinámico. Al considerar este tipo de regulación en redes con soporte geométrico (como es el caso de muchas redes reales como por ejemplo las redes neuronales), se ha demostrado que las interacciones triádicas dan lugar a patrones espacio-temporales complejos de conectividad [2]. El objetivo de este trabajo es estudiar el caso de una red uni-dimensional (como por ejemplo un anillo), en relación a un sistema 2-dimensional.

Tipología: Estudio de casos, teóricos o prácticos, relacionados con la temática del Grado.

Objetivos planteados:

- 1) Simular el modelo de percolación triádica sobre una red 1D (anillo) y 2D (toro) con condiciones de contorno periódicas.
- 2) Analizar el comportamiento emergente del sistema, en función de los principales parámetros de control (ruido térmico, número y alcance de los enlaces estructurales y regulatorios). Se buscará identificar el diagrama de fases del sistema en cada caso, y la emergencia o no de patrones espacio-temporales de actividad.
- 3) Analizar el paso de 2D a 1D considerando un toro rectangular en el que el tamaño de una de las dimensiones del toro (2D) tiende a cero, tendiendo al caso 1D. Análisis de bajo qué condiciones se recupera el límite 1D.

Bibliografía básica:

- [1] Sun, Hanlin, et al. "The dynamic nature of percolation on networks with triadic interactions." Nature Communications 14.1 (2023): 1308.
- [2] Millán, Ana P., et al. "Triadic percolation induces dynamical topological patterns in higher-order networks." PNAS nexus 3.7 (2024): pgae270.

Recomendaciones y orientaciones para el estudiante:

Se recomienda cursar o haber cursado las asignaturas de física computacional y sistemas complejos.

Plazas: 1

2. DATOS DEL TUTOR/A:

Nombre y apellidos: ANA PAULA MILLAN VIDAL

Ámbito de conocimiento/Departamento: FÍSICA DE LA MATERIA CONDENSADA

Correo electrónico: apmillan@ugr.es

3. COTUTOR/A DE LA UGR (en su caso):

Nombre y apellidos:

Ámbito de conocimiento/Departamento:

Correo electrónico:

4. COTUTOR/A EXTERNO/A (en su caso):

Nombre y apellidos:

Correo electrónico:

Nombre de la empresa o institución:

Dirección postal:

Puesto del tutor en la empresa o institución:

Centro de convenio Externo:

5. DATOS DEL ESTUDIANTE:

Nombre y apellidos: EUGENIO ETCHEVERRIA SANZ

Correo electrónico: eugetcheve@correo.ugr.es