



Propuesta TFG. Curso 2025/2026

GRADO: Grado en Física

**CÓDIGO DEL TFG:** 267-296-2025/2026

### 1. DATOS BÁSICOS DEL TFG:

**Título:** Introducción a la teoría de cuerda y sus fundamentos

### **Descripción general (**resumen y metodología):

La teoría de cuerdas es una de las candidatas con más potencial para describir de una manera unificada todas las interacciones físicas fundamentales [1, 2, 3]. Las teorías de cuerdas han sufrido sucesivas revoluciones, y actualmente se las considera como casos generales de teorías con dimensiones extra cuantizadas de tipo Kaluza-Klein [4], existiendo diferentes versiones de las mismas que se clasifican en función de sus simetrías. En estas teorías se asumen como objetos fundamentales cuerdas extendidas unidimensionales, en lugar de partículas puntuales. Cada cuerda define una superficie (1+1)-dim en el espacio-tiempo. En las formulaciones más modernas de la teoría de cuerdas se incluyen también objetos extendidos no-perturbativos conocidos como D-branas, con la propiedad de que las cuerdas abiertas tienen sus extremos sobre ellos [5, 6].

El objetivo de este trabajo es que la/el estudiante se inicie en los aspectos más relevantes de la teoría de cuerdas. Esto incluye conocer aspectos básicos acerca de la dinámica de una cuerda, su cuantización y simetrías.

Las técnicas matemáticas a desarrollar son los métodos basados en la mecánica cuántica, la relatividad general y las teorías de gravedad en dimensiones extra [7, 8].

Tipología: Estudio de casos, teóricos o prácticos, relacionados con la temática del Grado.

### **Objetivos planteados:**

Se abordarán los siguientes objetivos:

- 1. Se estudiarán los aspectos más relevantes de las teorías con dimensiones extra.
- 2. Se derivará la acción de la cuerda relativista en sus diferentes versiones: acción de Nambu-Goto y acción de Polyakov.
- 3. Se estudiará la cuantización de la cuerda cerrada y abierta, y sus simetrías.
- 4. Si el tiempo lo permite, se abordarán de manera introductoria diversos aspectos de la física de las D-branas, así como los fundamentos de la correspondencia AdS/CFT [9].

#### Bibliografía básica:

- [1] "String Theory in a Nutshell", E. Kiritsis. Princeton University Press (2007).
- [2] "String Theory", D. Tong. Eprint arXiv: 0908.0333.
- [3] "Basic concepts of String Theory", R. Blumenhagen, D. Lüst, S. Theisen, Springer (2013).
- [4] "Modern Kaluza-Klein Theories", T. Appelquist, A. Chodos, P.G.O. Freud, Addison-Wesley (1987).
- [5] "TASI lectures on D-branes", J. Polchinski, eprint arXiv:hep-th/9611050.
- [6] "D-branes", D. Johnson, Cambridge University Press (2003).
- [7] "A large mass hierarchy from a small extra dimension", L. Randall, R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370.
- [8] "Continuum effective field theories, gravity, and holography", S. Fichet, E. Megías, M. Quirós, Phys. Rev. D 107 (2023) 9, 096016.
- [9] "Gauge/gravity duality: Foundations and applications", M. Ammon, J. Erdmenger, Cambridge University Press (2015).

## Recomendaciones y orientaciones para el estudiante:

Se recomienda que la/el estudiante curse las asignaturas ''Relatividad General'' y ''Teoría de Campos y Partículas''.

Plazas: 1

#### 2. DATOS DEL TUTOR/A:

Nombre y apellidos: EUGENIO MEGÍAS FERNÁNDEZ

Ámbito de conocimiento/Departamento: FÍSICA ATÓMICA, MOLECULAR Y NUCLEAR

Correo electrónico: emegias@ugr.es

# 3. COTUTOR/A DE LA UGR (en su caso):

Nombre y apellidos:

Ámbito de conocimiento/Departamento:

Correo electrónico:

# 4. COTUTOR/A EXTERNO/A (en su caso):

Nombre y apellidos:

**Correo electrónico:** 

Nombre de la empresa o institución:

**Dirección postal:** 

Puesto del tutor en la empresa o institución:

Centro de convenio Externo:

### **5. DATOS DEL ESTUDIANTE:**

Nombre y apellidos: BELEN SARYCEVAS SANCHEZ

Correo electrónico: sarycevas@correo.ugr.es