



Propuesta TFG. Curso 2025/2026

GRADO: Grado en Física

**CÓDIGO DEL TFG:** 267-224-2025/2026

## 1. DATOS BÁSICOS DEL TFG:

**Título:** Contribución de estrellas ex-situ e in-situ a la masa estelar en las galaxias de vacíos cosmológicos

Descripción general (resumen y metodología):

## Breve descripción del trabajo:

Las galaxias crecen tanto mediante la formación estelar interna (in-situ), como a través de la acreción de estrellas formadas en otras galaxias durante procesos de fusión galáctica (ex-situ). Diversos estudios han cuantificado la contribución relativa de estos dos componentes en la formación estelar utilizando simulaciones numéricas de última generación. Algunos de estos trabajos han reconstruido mapas observacionales simulados, emulando las observaciones de cartografiados espectroscópicos de campo integral como MaNGA (Yan et al. 2016). Mediante técnicas de aprendizaje automático, en particular el uso combinado de conditional variational autoencoders y normalizing flows, se ha logrado inferir la distribución posterior bidimensional de la masa estelar ex-situ a partir exclusivamente de mapas observables en dos dimensiones de masa estelar, cinemática, edad y metalicidad estelar (Angeloudi et al. 2024). Tenemos acceso dentro del equipo a los resultados de estos trabajos.

Dentro de la muestra del cartografiado MaNGA, que incluye aproximadamente 10.000 galaxias, se ha identificado un subconjunto de unas 200 galaxias situadas en vacíos cósmicos. El objetivo de este trabajo es analizar esta submuestra de galaxias en vacíos para determinar si la distribución de estrellas ex-situ difiere sistemáticamente de la observada en galaxias ubicadas en entornos más densos. Esta comparación permitirá estudiar el impacto del entorno a gran escala en la historia de ensamblaje estelar de las galaxias.

Tipología: Estudio de casos, teóricos o prácticos, relacionados con la temática del Grado.

# **Objetivos planteados:**

- -Familiarizarse con la bibliografía recomendada
- -Aprender sobre formación de galaxias y familiarizarse con los datos de espectroscopía integral
- -Aprender sobre las metodologías de 'Machine learning' aplicadas a la muestra
- -Analizar los resultados del análisis de los datos ya publicados sobre distribución de estrellas ex-situ e in-situ de los datos de MaNGA y analizar los resultados obtenidos para las galaxias en vacíos cósmicos y compararlos a los datos obtenidos para galaxias situadas en entornos más densos:

#### Metodología:

La alumna utilizará la muestra MaNGA (Yan et al. 2016) para determinar las galaxias pertencientes a vacíos cósmicos usando la muestra de Pan et al (2012) y la metodología desarrollada dentro delproyecto CAVITY (Pérez et al. 2024). Usando los resultados obtenidos en (Ageloudi et al. 2024) y empleando técnicas estadísticas y de programación PYTHON determinará si la fracción de estrellas in-situ y ex-situ es similar a las obtenidas para galaxias situadas en entornos más densos.

## Bibliografía básica:

[1]: Angeloudi, E., Huertas-Company, M., Falcón-Barroso, J., et al. 2024, 'Simulation-based inference of the 2D ex-situ stellar mass fraction distribution of galaxies using variational autoencoders' arXiv:2410.24069. doi:10.48550/arXiv.2410.24069

[2]:Yan, R., Bundy, K., Law, D. R., et al. (2016). "SDSS-IV MaNGA: Survey Design, Execution, and Initial Data Quality." The Astronomical Journal, 152(6), 197.

[3]: Pan, D. C., Vogeley, M. S., Hoyle F., Choi, Y.Y., et al., 2012, MNRAS, 421, 926

[4]: Pérez, I., Verley, S., Sánchez-Menguiano, L., Ruiz-Lara, T., García-Benito, R., Duarte Puertas, S., et al. (2024). "CAVITY, Calar Alto Void Integral-field Treasury surveY and project extension." Astronomy & Astrophysics, 689, A213.

#### Recomendaciones y orientaciones para el estudiante:

Plazas: 1

#### 2. DATOS DEL TUTOR/A:

Nombre y apellidos: MARÍA ISABEL PÉREZ MARTÍN

Ámbito de conocimiento/Departamento: ASTRONOMÍA Y ASTROFÍSICA

Correo electrónico: isa@ugr.es

### 3. COTUTOR/A DE LA UGR (en su caso):

Nombre y apellidos: Bahar Bidaran

Ámbito de conocimiento/Departamento: ASTRONOMÍA Y ASTROFÍSICA

Correo electrónico: bidaran@ugr.es

# 4. COTUTOR/A EXTERNO/A (en su caso):

Nombre y apellidos: Jesús Falcón Barroso

Correo electrónico: jesus.falcon.barroso@iac.es

Nombre de la empresa o institución: Instituto de Astrifísica de Canarias

Dirección postal: C. Vía Láctea, s/n, 38205 La Laguna, Santa Cruz de Tenerife

Puesto del tutor en la empresa o institución: Investigador Científico

Centro de convenio Externo:

#### 5. DATOS DEL ESTUDIANTE:

Nombre y apellidos: MARIA AGUAYO JIMENEZ Correo electrónico: maguayoj@correo.ugr.es