

Propuesta TFG. Curso 2025/2026

GRADO: Grado en Ingeniería Electrónica

Industrial

CÓDIGO DEL TFG: 205-087-2025/2026

1. DATOS BÁSICOS DEL TFG:

Título: Diseño e implementación de un multidatalogger IoT con visualización remota en una página web

Descripción general (resumen y metodología):

Diseñar, implementar y desplegar un sistema de adquisición de datos multicanal (multidatalogger) basado en un microcontrolador ESP32, que permita registrar variables físicas (como temperatura, humedad, presión, luminosidad, etc.), enviarlas a un servidor web mediante WiFi o Ethernet, y visualizarlas de forma remota a través de una página web responsive.

La informacion de los sensores en tiempo real, tendrá posiblidades de enviar la informacion mediante Wifi a un serivdor/página web y LoRa (modulación que emplean los dispositivos para lograr una cobertura con baja potencia) e inalámbrica de largo alcance.

Justificación

En la era del Internet de las Cosas (IoT), la capacidad de monitorizar variables ambientales o de proceso a distancia es esencial en sectores como la agricultura de precisión, la industria 4.0, la domótica o la investigación científica. Este proyecto integra conocimientos clave de electrónica, programación embebida, redes, y desarrollo web, ofreciendo una solución real y aplicable en múltiples contextos. Así mismo se utilizará **LoR**; que es ur **protocol** de capa física que utiliza la modulación de espectro amplio y admite **comunicacione** de largo alcance a costa de un ancho de banda estrecho.

Tipología: Trabajos experimentales, de toma de datos de campo o de laboratorio.

Objetivos planteados:

Objetivos específicos

Seleccionar y configurar múltiples sensores electrónicos para la adquisición de variables físicas. Programar un microcontrolador (Arduino, ESP32, STM32, etc.) para gestionar la lectura de sensores y la comunicación de red.

Desarrollar un sistema de envío de datos al servidor (protocolo HTTP, MQTT o WebSocket). Diseñar e implementar una página web para la visualización remota de los datos en tiempo real. Implementar una base de datos local o en la nube para el almacenamiento histórico de datos. Asegurar la escalabilidad y la robustez del sistema para un uso continuo.

Contenidos del proyecto

Microcontrolador (ESP32 recomendado por WiFi integrado)

Módulos sensores:

Temperatura/humedad: DHT22 o BME280

Luminosidad: BH1750 Presión: BMP180 o BME280 Gas/CO2/otros opcionales

Conversores A/D si se emplean sensores analógicos

Software embebido

Lectura cíclica de sensores

Gestión de errores y watchdog

Comunicación:

WiFi: envío por HTTP POST, MQTT o WebSocket

Almacenamiento local en SD (opcional)

Backend y base de datos

Servidor local o en la nube (ej. Flask, Node.js o Firebase) Almacenamiento de datos: SQLite, MySQL o Firebase Realtime DB API para consulta y envío de datos

Frontend (interfaz web)

Página web responsive (HTML5, CSS, JavaScript) Visualización de datos con gráficos (ej. Chart.js) Dashboard con tarjetas de lectura actual, histórico y alertas (Opcional) Sistema de usuarios y autenticación

Metodología de trabajo

Fase de análisis: definición de variables, sensores y requisitos del sistema
Fase de diseño: esquemas electrónicos, arquitectura del software, diseño UI
Fase de implementación: programación embebida y desarrollo web
Fase de integración: comunicación entre microcontrolador y servidor
Fase de pruebas: validación funcional, pruebas de estrés y robustez
Documentación y presentación: redacción del informe y demo

Resultados esperados

Sistema físico funcional capaz de medir al menos 3 variables simultáneamente Envío fiable de los datos a un servidor remoto Página web accesible desde PC o móvil con gráficos en tiempo real Almacenamiento y exportación de datos históricos (Opcional) Alertas por email o SMS ante umbrales críticos

Bibliografía básica:

Bibliografía y recursos iniciales

Exploring ESP32 - Neil Kolban
Designing Embedded Systems - John Catsoulis
Chart.js - https://www.chartjs.org/
Arduino Docs - https://www.arduino.cc/reference/en/
Firebase Docs - https://firebase.google.com/docs

Recomendaciones y orientaciones para el estudiante:

Plazas: 1

2. DATOS DEL TUTOR/A:

Nombre y apellidos: GUILLERMO RAMÓN IGLESIAS SALTO

3. <u>COTUTOR/A DE LA UGR</u> (en su caso):
Nombre y apellidos:
Ámbito de conocimiento/Departamento:
Correo electrónico:
4. <u>COTUTOR/A EXTERNO/A</u> (en su caso):
Nombre y apellidos:
Correo electrónico:
Nombre de la empresa o institución:
Dirección postal:
Puesto del tutor en la empresa o institución:
Centro de convenio Externo:
5. DATOS DEL ESTUDIANTE:
Nombre y apellidos:
Correo electrónico:

Ámbito de conocimiento/Departamento: FÍSICA APLICADA

Correo electrónico: iglesias@ugr.es