Propuesta de Trabajo Fin de Grado en Física

Tutor/a: Raúl A. Rica Alarcón
Departamento y Área de Conocimiento:
Física Aplicada
Cotutor/a:
Departamento y Área de Conocimiento:

Título del Trabajo: Simulación de la dinámica estocástica de una nanopartícula confinada en una trampa híbrida electro-óptica

Tipología del Trabajo:
(Según punto 3 de las Directrices del TFG aprobadas por Comisión Docente el 10/12/14) (Marcar con X)
1. Revisión bibliográfica
2. Estudio de casos teórico-prácticos
3. Trabajos experimentales
4. Elaboración de nuevas prácticas de laboratorio
5. Elaboración de un proyecto
6. Trabajo relacionado con prácticas externas

Breve descripción del trabajo:
La levitación de nanopartículas en vacío es un nuevo campo de investigación muy activo y que está dando lugar a muy interesantes estudios sobre propiedades fundamentales de la materia en la escala nanométrica. Existen distintas formas de levitar nanopartículas en vacío, y cada una presenta ventajas e inconvenientes que las hacen adecuadas para aplicaciones específicas. Con este trabajo, se pretende explorar la posibilidad de diseñar una trampa híbrida electro-óptica, en la que la superposición de un campo óptico y uno eléctrico da lugar a un control optimizado de la dinámica de la partícula atrapada. Se espera que este tipo de trampas sean muy útiles en el estudio de la interacción radiación-materia, los límites de aplicabilidad de la mecánica cuántica o la dinámica estocástica en la escala nanométrica.

Objetivos planteados:
- Estudio analítico de la dinámica estocástica de una nanopartícula atrapada en una trampa híbrida opto-eléctrica.
- Desarrollo de una simulación computacional que permita estudiar la dinámica de partículas atrapadas.
- Aplicación de los conocimientos adquiridos al diseño de una trampa híbrida para nanopartículas.

Metodología:
El alumno primero estudiará los fundamentos físicos que justifican la posibilidad de levitar mediante campos ópticos (láser focalizado) y eléctricos partículas en la escala nanométrica. Para ello, el alumno deberá estudiar la teoría de scattering de luz por parte de partículas dielectricas de tamaño nanométrico y la dinámica de partículas cargadas en trampas de Paul o radiofrecuencia. Además, el alumno deberá adquirir/repasar los conocimientos que le permitan entender el efecto de la agitación Browniana de la partícula atrapada debida a colisiones con las moléculas del gas residual en la región de atrapamiento.

Una vez adquiridos estos conocimientos, el alumno realizará un estudio computacional de la dinámica browniana de partículas atrapadas. Para ello, el alumno podrá utilizar una librería ya desarrollada en Python o implementar su propio código. El estudio computacional pretende adquirir una comprensión profunda de la compleja dinámica presente en este tipo de sistema físico. A continuación, se buscará maximizar el confinamiento de la partícula en el espacio, a la vez que se minimiza la potencia de luz láser requerida.

Esta información permitirá el diseño de una geometría que permita combinar el acceso óptico necesario para generar la trampa óptica con los electrodo que dan lugar al campo eléctrico requerido para la trampa de Paul.
Bibliografía:

A rellenar sólo en el caso que el alumno sea quien realice la propuesta de TFG
Alumno/a propuesto/a:

Granada 7 de Mayo 2018
Sello del Departamento

Comisión Docente de Físicas
Facultad de Ciencias