GUIA DOCENTE DE LA ASIGNATURA DESCRIPTION OF INDIVIDUAL COURSE UNIT

1.- Nombre de la asignatura/módulo/unidad y código

Course title and code

2.- Nivel (Grado/Postgrado)

(Undergraduate

3.- Plan de estudios en que se integra

Programme in which is

4.- Tipo

(Troncal/Obligatoria/Optativa)

Гуре of course Compulsory/Elective)

5.- Año en que se programa

ear of study

6.- Calendario (Semestre)

Calendar (Semester)

7.- Créditos teóricos y prácticos

Credits (theory and practics)

8.- Créditos expresados como volumen total de trabajo del estudiante (ECTS)

Number of credits expressed as student workload (ECTS)

9.- Prerrequisitos y recomendaciones (E, esencial; R, recomendado; H, ayuda)

Prerequisites and advises (E essential; R, recommended; H, helpful)

10. Objetivos (expresados como resultados de aprendizaje y competencias)

Objectives of the course (expressed in terms of learning outcomes and competences)

11.- Programa

Course contents

ECOLOGÍA DE LA BIOSFERA

Grado

Licenciatura en Biología

Optativa

1er cuatrimestre

6 créditos LRU (4teóricos, 2 prácticos)

6 ECTS (155 horas de trabajo del estudiante)

E: Haber cursado y aprobado la asignatura troncal de Ecología

R H

1. Objetivos formativos

Generales:

Establecer la importancia de las escalas temporales y espaciales en el análisis de los compartimentos y los procesos en el planeta Tierra. Desarrollar un espíritu critico sobre la acción del hombre sobre la Biosfera.

Específicos:

Establecer el hecho diferencial de La Vida para comprender las características del planeta Tierra.

Análisis del cambio climático sobre diversas escalas temporales: Geológicas- ecológicas

Analizar los mecanismos homeo-reostaticos en el mantenimiento de las condiciones del planeta Tierra.

Importancia del análisis multidimensional y multidisciplinar en la comprensión de los procesos biosféricos.

Comprender los patrones y modelos globales de los principales ciclos biogeoquímicos

Estudiar los principales perturbaciones en los distintos compartimentos sobre dimensiones espaciales: regional-global

2. Destrezas

Aproximación al análisis de procesos globales: registro fósil, modelos dinámicos-predictivos

Aprendizaje de técnicas de análisis global: teledetección

Adquisición y manejo de información bibliográfica sobre la Ecología Global

INTRODUCCIÓN:

Tema 1.-Conceptos y herramientas. Concepto de biosfera: Vernadsky. ¿Que es la biogeoquímica? Relación con otras disciplinas. Escalas de estudio. Los modelos: modelos de compartimentos. Definición de compartimento, flujo, fuente, sumidero. Tiempo de residencia.

Tema 2.- **Orígenes**. Origen de los elementos. Origen del sistema solar y de la Tierra. La atmósfera y los Océanos primitivos. Origen y evolución de la vida. Evolución de las rutas metabólicas.

COMPARTIMENTOS, PROCESOS Y PERTURBACIONES:

Tema 3.- La atmósfera. Estructura vertical y circulación global. Composición y reacciones biogeoquímicas. Fotoquímica atmosférica: oxígeno monoatómico y formación de ozono. Ozono troposférico. Ozono estratosférico: formación y destrucción-Teorías. Radiación ultravioleta. Deposición atmosférica. Lluvia ácida. Aerosoles. Gases invernadero

Tema 4.- La hidrosfera: Circulación oceánica: convergencias, divergencias y afloramientos. Corrientes superficiales y circulación termohalina. Composición química.Interacciones atmósfera-océano. Fenómeno del Niño. Oscilación del Atlántico Norte y del Pacífico Sur. Procesos biológicos en los océanos. Producción primaria. Producción nueva- producción regenerada. Producción exportada y reciclada. La bomba biológica. Relación con los ciclos de C, N, P S

Tema 5.- La litosfera. Meteorización. Edafogénesis. Producción primaria neta: estimas globales. Descomposición de la materia orgánica. Reciclado biogeoquímico del suelo. Deforestación e incendios. Cálculo de balance de masas a escala del paisaje.

CICLO GLOBALES:

Tema 6.-Ciclo global del Agua: Compartimentos y flujos. Tendencias actuales en el uso del agua. Perspectivas en relación con el cambio climático

Tema 7.- Ciclo del carbono: Compartimentos mayoritarios. Flujo de carbono. Modelos del ciclo del carbono. Tendencia temporal. Perturbaciones antrópicas. Monóxido de carbono y metano.

Tema 8.- Ciclo del Nitrógeno. Transformaciones biológicas de los compuestos de nitrógeno. Balance de masas globales. Los abonos nitrogenados.

Tema 9.- Ciclo del Fósforo. Circulación del Fósforo. Importancia de los aerosoles en el transporte de fósforo. Evaluación. Compartimentos y flujos. Tema 10.- Ciclo del azufre. Estados de oxidación del azufre: transformaciones. Distribución del azufre entre compartimentos. Flujos océano-

atmósfera. Papel del dimetilsulfoxido en la regulación del clima. La hipótesis Gaia: revisita. Perturbaciones antrópicas

Tema 11.- Conexiones entre los ciclos globales de C, N y P. La estequiometría a gran escala. Estequiometría en el tiempo. Homeostasis del "pool" abiótico de oxígeno. C:N:P y cambio global

INTEGRACIÓN:

Tema 12.- Cambio global Principales causas de cambio global. Crecimiento de la población humana. Consecuencias de la superpoblación .

Tema 13.- Cambio climático. Un fenómeno actual. Análisis historico de los cambios climáticos.

Efecto del "actual" cambio climático sobre la salud humana, la agricultura. La distribución global de los ecosistemas. Perspectivas futuras y políticas de control

12.Bibliografía recomendada

Recommended reading

- Margalef R 1992. Planeta azul, planeta verde Prensa Científica. Barcelona
- Margalef R 1997 Our Biosphere Ecology Institute. Oldendorf/Luhe
- Mackenzie R.1998 Our changing planet. An introduction to Earth Systems
- Science an Global Environmental Change. Prentice Hall
- Bush, M. B. 1997 Ecology of a Changing Planet. Prentice Hall
- Peñuelas, J 1993 El aire de la vida Ariel
- Rambel, M. B. Margulis, M & Fester, R. 1989 Global ecology: toward a Science of the Biosphere. Academic Press . Nueva York.
- Schlesinger , W. H. 1997 Biogeochemistry : An Analysis of Global Change. Academic Press. Nueva York
- Smil,V 2002. The Earth's Biosphere: Evolution, Dynamics and Change. The MIT Press Cambridge
- Volk T. 1998 Gaia's Body: Toward a Physiology of Earth. Springer-Verlag. Nueva York
- Vazquez Abeledo , M. La historia del Sol y el cambio climático. McGraw Hill

13.Métodos docentes

Teaching methods

- Clases magistrales
- Seminarios obligatorios
- Exposición y discusión de seminarios
- Tutorías
- Prácticas

14.Actividades y horas de ıbajo estimadas

tivities and estimate orkload (hours)

15.Tipo de evaluación y criterios de calificación

Assessment methods

16.Nombre del profesor(es) y dirección de contacto para tutorías

address for tutoring

2.4 créditos teoría	24 horas	24 horas presenciales	48 horas estudio	72 horas
1.7 créditos prácticas	17 horas	17 horas presenciales	13 horas estudio y trabajo	30 horas
Seminario	18.5 horas	18.5 horas presenciales	32.5 horas trabajo	51 horas
Tutorías personalizadas	2 horas			2 horas
TOTAL = 6 ECTS				155 horas

- Examen final escrito de contenidos teóricos y practicas
- Valoración de la elaboración y exposición de seminarios
- Evaluación de la memoria de prácticas
- Asistencia a Seminarios impartidos por compañeros y participación en la discusión y el planteamiento de cuestiones relevantes

Isabel Reche Cañabate: <u>ireche@ugr.es</u>