TRABAJO FIN DE GRADO (TFG) EN CIENCIAS AMBIENTALES
Facultad de Ciencias
Universidad de Granada
Oferta de las Áreas de Conocimiento
Curso 2015-2016

OFERTA DE TRABAJO FIN DE GRADO (6 créditos)

Departamento: Genética
Área de Conocimiento: Genética

Título: Estudio de la interacción entre células somáticas y germinales utilizando como modelo el testículo de Drosophila melanogaster

Tutor: Federico Zurita Martínez

Resumen global de Objetivos y Contenidos (en menos de 200 palabras):

Introducción. Los machos de Drosophila presentan dos testículos, cada uno de los cuales es un tubo ciego. El “nicho” (microambiente celular y de señalización) se localiza en el extremo apical del tubo y contiene células somáticas y germinales (Germ Stem Cells, GSCs) Las GSCs se dividen asimétricamente y rinden dos células con destinos diferentes: permanecerá como GSC mientras que la otra, entra en diferenciación (gonioblasto). El gonioblasto dará lugar a 16 células espermatorgoniales que entran en meiosis. En el extremo apical del testículo se encuentran las células hub que están rodeadas por las GSCs. Tanto la entrada en meiosis como el mantenimiento de las GSCs se regula por la interacción entre los distintos fenotipos celulares presentes.

El sistema UAS:Gal4 de levadura es ampliamente utilizado en Drosophila para estudios de expresión génica. Utilizaremos este sistema combinado con el sistema Split:GFP (Green-Fluorescent-Protein) para localizar los puntos de sinapsis (contacto) entre las células germinales y las somáticas.

Objetivos. Estudiar la interacción entre las células somáticas y germinales en el testículo de Drosophila utilizando el sistema Gal4: UAS combinado con el sistema split-GFP, lo que nos permitirá localizar las regiones donde contactan e interaccionan células somáticas y germinales.

Plan de Trabajo.

1) Entrevista con el tutor, con el objeto de poner en contacto al alumno con las técnicas y diseñar los cruces a realizar. 2.5 horas
2) Cruce moscas de ambos stocks. 5 horas
3) Se disecan los machos, se extraen los testículos, y se utilizan para hacer inmunofluorescencia indirecta sobre ellos. 50 horas.
4) Se montarán las preparaciones y se observarán los testis con microscopio de fluorescencia. 15 horas
5) Observación a microscopio y toma de fotografías: 45 horas
6) Preparación de la memoria: 25 horas
7) Preparación de la exposición pública. 7 horas
8) Exposición pública. 30 minutos