

Gleason.

Propuesta de Trabajo Fin de Grado del Doble Grado en Física y Matemáticas (curso 2022–23)

I	Responsable de tutorización: Armando R. Villena Muñoz
l	Correo electrónico: avillena@ugr.es
	Departamento: Análisis Matemático
l	Área de conocimiento: Análisis Matemático
ſ	Responsable de cotutorización:
l	Correo electrónico:
l	Departamento:
L	Área de conocimiento:
I	(Rellenar sólo en caso de que la propuesta esté realizada a través de un estudiante):
l	Estudiante que propone el trabajo: Liang Liang Yang
1	Tétula Operadores de alega trara y au aplicación en macénica quéntica
l	Título: Operadores de clase traza y su aplicación en mecánica cuántica
ŀ	Número de créditos: ☐ 6 ECTS ☒ 12 ECTS
I	Tipología del trabajo (marcar las casillas que correspondan):
l	\boxtimes 1. Revisiones y/o trabajos biliográficos sobre el estado actual de aspectos específicos relacionados con la
l	titulación
l	■ 2. Estudio de casos, teóricos o prácticos, relacionados con la temática de la titulación, a partir de material
	disponible en los centros
	\square 3. Trabajos experimentales, de toma de datos de campo, de laboratorio, etc.
	4. Elaboración de nuevas prácticas de laboratorio
l	☐ 5. Elaboración de un informe o un proyecto en el ámbito del grado de naturaleza profesional
	☐ 6. Trabajos relacionados con las prácticas externas
ŀ	Descripción y resumen de contenidos:
	Descripcion y resumen de concentidos.
	El ideal de operadores sobre un espacio de Hilbert conocido como la clase traza constituye
l	un objeto fundamental por ser un ejemplo básico de la teoría de integración no conmutativa
	y por ser un instrumento básico para formalizar adecuadamente diversos aspectos de la
	mecánica cuántica, como son los estados y las medidas de probabilidad. Este trabajo se
	vertebrará en torno a los siguientes temas específicos.
	1. Teoría espectral de operadores en un espacio de Hilbert: operadores compactos, ope-
	radores autoadjuntos (acotados o no).

2. La noción de traza. Operadores de clase traza. La noción general de estado.

3. Topologías de operadores: topología fuerte, topología débil, topología ultradébil.

4. Manifestación de los estados como medidas cuánticas de probabilidad. Teorema de

Actividades a desarrollar:

- 1. Actualizar los conocimientos adquiridos en las materias del grado relacionadas con el trabajo. Subsanar las eventuales deficiencias.
- 2. Examinar los textos citados en la bibliografía. Profundizar en aquellos aspectos que sean relevantes para el trabajo. Buscar otras fuentes bibliográficas significativas, si fuere pertinente.
- 3. Seleccionar los temas específicos que se tratarán de manera exhaustiva en el trabajo. Seleccionar los temas que se presentarán de manera meramente divulgativa, si los hubiere.

Objetivos planteados

- 1. Estudiar las propiedades fundamentales de los operadores traza y del espacio de los operadores traza.
- 2. Describir la relación entre operadores traza, estados de un sistema cuántico y medidas cuánticas de probabilidad.

Bibliografía

- [1] J. B. Conway, A course in functional analysis. Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1990.
- [2] A. Dvurecenskij, Gleason's theorem and its applications. Kluwer Academic Publishers, Bratislava, 1993.
- [3] B. C. Hall, Quantum theory for mathematicians. Graduate Texts in Mathematics, 267. Springer, New York, 2013.
- [4] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras. I, II. Pure and Applied Mathematics, 100. Academic Press, Inc., New York, 1983.
- [5] V. Moretti, Spectral theory and quantum mechanics. Mathematical foundations of quantum theories, symmetries and introduction to the algebraic formulation. Unitext, 110. La Matematica per il 3+2. Springer, Cham, 2017.
- [6] J. von Neumann, Mathematical foundations of quantum mechanics. Princeton University Press, Princeton, NJ, 2018.
- [7] M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis. Academic Press, Inc., New York, 1980.
- [8] M. Takesaki, *Theory of operator algebras. I.* Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry. Springer-Verlag, Berlin, 2002.

Firma del estudiante

(sólo para trabajos propuestos por estudiantes)

Firma del responsable de tutorización

En Granada, a 28 de abril de 2022.